Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FER-former: Multi-modal Transformer for Facial Expression Recognition (2303.12997v1)

Published 23 Mar 2023 in cs.CV

Abstract: The ever-increasing demands for intuitive interactions in Virtual Reality has triggered a boom in the realm of Facial Expression Recognition (FER). To address the limitations in existing approaches (e.g., narrow receptive fields and homogenous supervisory signals) and further cement the capacity of FER tools, a novel multifarious supervision-steering Transformer for FER in the wild is proposed in this paper. Referred as FER-former, our approach features multi-granularity embedding integration, hybrid self-attention scheme, and heterogeneous domain-steering supervision. In specific, to dig deep into the merits of the combination of features provided by prevailing CNNs and Transformers, a hybrid stem is designed to cascade two types of learning paradigms simultaneously. Wherein, a FER-specific transformer mechanism is devised to characterize conventional hard one-hot label-focusing and CLIP-based text-oriented tokens in parallel for final classification. To ease the issue of annotation ambiguity, a heterogeneous domains-steering supervision module is proposed to make image features also have text-space semantic correlations by supervising the similarity between image features and text features. On top of the collaboration of multifarious token heads, diverse global receptive fields with multi-modal semantic cues are captured, thereby delivering superb learning capability. Extensive experiments on popular benchmarks demonstrate the superiority of the proposed FER-former over the existing state-of-the-arts.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.