Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HAPS-UAV-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach (2303.12883v1)

Published 22 Mar 2023 in eess.SY and cs.SY

Abstract: The integrated use of non-terrestrial network (NTN) entities such as the high-altitude platform station (HAPS) and low-altitude platform station (LAPS) has become essential elements in the space-air-ground integrated networks (SAGINs). However, the complexity, mobility, and heterogeneity of NTN entities and resources present various challenges from system design to deployment. This paper proposes a novel approach to designing a heterogeneous network consisting of HAPSs and unmanned aerial vehicles (UAVs) being LAPS entities. Our approach involves jointly optimizing the three-dimensional trajectory and channel allocation for aerial base stations, with a focus on ensuring fairness and the provision of quality of service (QoS) to ground users. Furthermore, we consider the load on base stations and incorporate this information into the optimization problem. The proposed approach utilizes a combination of deep reinforcement learning and fixed-point iteration techniques to determine the UAV locations and channel allocation strategies. Simulation results reveal that our proposed deep learning-based approach significantly outperforms learning-based and conventional benchmark models.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.