Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SMUG: Towards robust MRI reconstruction by smoothed unrolling (2303.12735v1)

Published 14 Mar 2023 in eess.IV, cs.CV, cs.LG, and physics.med-ph

Abstract: Although deep learning (DL) has gained much popularity for accelerated magnetic resonance imaging (MRI), recent studies have shown that DL-based MRI reconstruction models could be oversensitive to tiny input perturbations (that are called 'adversarial perturbations'), which cause unstable, low-quality reconstructed images. This raises the question of how to design robust DL methods for MRI reconstruction. To address this problem, we propose a novel image reconstruction framework, termed SMOOTHED UNROLLING (SMUG), which advances a deep unrolling-based MRI reconstruction model using a randomized smoothing (RS)-based robust learning operation. RS, which improves the tolerance of a model against input noises, has been widely used in the design of adversarial defense for image classification. Yet, we find that the conventional design that applies RS to the entire DL process is ineffective for MRI reconstruction. We show that SMUG addresses the above issue by customizing the RS operation based on the unrolling architecture of the DL-based MRI reconstruction model. Compared to the vanilla RS approach and several variants of SMUG, we show that SMUG improves the robustness of MRI reconstruction with respect to a diverse set of perturbation sources, including perturbations to the input measurements, different measurement sampling rates, and different unrolling steps. Code for SMUG will be available at https://github.com/LGM70/SMUG.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com