Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-view Feature Extraction based on Triple Contrastive Heads (2303.12615v1)

Published 22 Mar 2023 in cs.CV

Abstract: Multi-view feature extraction is an efficient approach for alleviating the issue of dimensionality in highdimensional multi-view data. Contrastive learning (CL), which is a popular self-supervised learning method, has recently attracted considerable attention. In this study, we propose a novel multi-view feature extraction method based on triple contrastive heads, which combines the sample-, recovery- , and feature-level contrastive losses to extract the sufficient yet minimal subspace discriminative information in compliance with information bottleneck principle. In MFETCH, we construct the feature-level contrastive loss, which removes the redundent information in the consistency information to achieve the minimality of the subspace discriminative information. Moreover, the recovery-level contrastive loss is also constructed in MFETCH, which captures the view-specific discriminative information to achieve the sufficiency of the subspace discriminative information.The numerical experiments demonstrate that the proposed method offers a strong advantage for multi-view feature extraction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)