Papers
Topics
Authors
Recent
2000 character limit reached

Multiscale Attention via Wavelet Neural Operators for Vision Transformers (2303.12398v4)

Published 22 Mar 2023 in cs.CV and cs.LG

Abstract: Transformers have achieved widespread success in computer vision. At their heart, there is a Self-Attention (SA) mechanism, an inductive bias that associates each token in the input with every other token through a weighted basis. The standard SA mechanism has quadratic complexity with the sequence length, which impedes its utility to long sequences appearing in high resolution vision. Recently, inspired by operator learning for PDEs, Adaptive Fourier Neural Operators (AFNO) were introduced for high resolution attention based on global convolution that is efficiently implemented via FFT. However, the AFNO global filtering cannot well represent small and moderate scale structures that commonly appear in natural images. To leverage the coarse-to-fine scale structures we introduce a Multiscale Wavelet Attention (MWA) by leveraging wavelet neural operators which incurs linear complexity in the sequence size. We replace the attention in ViT with MWA and our experiments with CIFAR and Tiny-ImageNet classification demonstrate significant improvement over alternative Fourier-based attentions such as AFNO and Global Filter Network (GFN).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.