Frozen Language Model Helps ECG Zero-Shot Learning (2303.12311v1)
Abstract: The electrocardiogram (ECG) is one of the most commonly used non-invasive, convenient medical monitoring tools that assist in the clinical diagnosis of heart diseases. Recently, deep learning (DL) techniques, particularly self-supervised learning (SSL), have demonstrated great potential in the classification of ECG. SSL pre-training has achieved competitive performance with only a small amount of annotated data after fine-tuning. However, current SSL methods rely on the availability of annotated data and are unable to predict labels not existing in fine-tuning datasets. To address this challenge, we propose Multimodal ECG-Text Self-supervised pre-training (METS), the first work to utilize the auto-generated clinical reports to guide ECG SSL pre-training. We use a trainable ECG encoder and a frozen LLM to embed paired ECG and automatically machine-generated clinical reports separately. The SSL aims to maximize the similarity between paired ECG and auto-generated report while minimize the similarity between ECG and other reports. In downstream classification tasks, METS achieves around 10% improvement in performance without using any annotated data via zero-shot classification, compared to other supervised and SSL baselines that rely on annotated data. Furthermore, METS achieves the highest recall and F1 scores on the MIT-BIH dataset, despite MIT-BIH containing different classes of ECG compared to the pre-trained dataset. The extensive experiments have demonstrated the advantages of using ECG-Text multimodal self-supervised learning in terms of generalizability, effectiveness, and efficiency.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.