Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Evaluating Transformer Models and Human Behaviors on Chinese Character Naming (2303.12294v2)

Published 22 Mar 2023 in cs.CL

Abstract: Neural network models have been proposed to explain the grapheme-phoneme mapping process in humans for many alphabet languages. These models not only successfully learned the correspondence of the letter strings and their pronunciation, but also captured human behavior in nonce word naming tasks. How would the neural models perform for a non-alphabet language (e.g., Chinese) unknown character task? How well would the model capture human behavior? In this study, we first collect human speakers' answers on unknown character naming tasks and then evaluate a set of transformer models by comparing their performances with human behaviors on an unknown Chinese character naming task. We found that the models and humans behaved very similarly, that they had similar accuracy distribution for each character, and had a substantial overlap in answers. In addition, the models' answers are highly correlated with humans' answers. These results suggested that the transformer models can well capture human's character naming behavior.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.