Papers
Topics
Authors
Recent
2000 character limit reached

Preventing Dimensional Collapse of Incomplete Multi-View Clustering via Direct Contrastive Learning (2303.12241v1)

Published 22 Mar 2023 in cs.CV and cs.AI

Abstract: Incomplete multi-view clustering (IMVC) is an unsupervised approach, among which IMVC via contrastive learning has received attention due to its excellent performance. The previous methods have the following problems: 1) Over-reliance on additional projection heads when solving the dimensional collapse problem in which latent features are only valid in lower-dimensional subspaces during clustering. However, many parameters in the projection heads are unnecessary. 2) The recovered view contain inconsistent private information and useless private information will mislead the learning of common semantics due to consistent learning and reconstruction learning on the same feature. To address the above issues, we propose a novel incomplete multi-view contrastive clustering framework. This framework directly optimizes the latent feature subspace, utilizes the learned feature vectors and their sub-vectors for reconstruction learning and consistency learning, thereby effectively avoiding dimensional collapse without relying on projection heads. Since reconstruction loss and contrastive loss are performed on different features, the adverse effect of useless private information is reduced. For the incomplete data, the missing information is recovered by the cross-view prediction mechanism and the inconsistent information from different views is discarded by the minimum conditional entropy to further avoid the influence of private information. Extensive experimental results of the method on 5 public datasets show that the method achieves state-of-the-art clustering results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.