Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compositional 3D Scene Generation using Locally Conditioned Diffusion (2303.12218v2)

Published 21 Mar 2023 in cs.CV

Abstract: Designing complex 3D scenes has been a tedious, manual process requiring domain expertise. Emerging text-to-3D generative models show great promise for making this task more intuitive, but existing approaches are limited to object-level generation. We introduce \textbf{locally conditioned diffusion} as an approach to compositional scene diffusion, providing control over semantic parts using text prompts and bounding boxes while ensuring seamless transitions between these parts. We demonstrate a score distillation sampling--based text-to-3D synthesis pipeline that enables compositional 3D scene generation at a higher fidelity than relevant baselines.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets