Emergent Mind

Abstract

Mixed-signal neuromorphic processors provide extremely low-power operation for edge inference workloads, taking advantage of sparse asynchronous computation within Spiking Neural Networks (SNNs). However, deploying robust applications to these devices is complicated by limited controllability over analog hardware parameters, as well as unintended parameter and dynamical variations of analog circuits due to fabrication non-idealities. Here we demonstrate a novel methodology for ofDine training and deployment of spiking neural networks (SNNs) to the mixed-signal neuromorphic processor DYNAP-SE2. The methodology utilizes gradient-based training using a differentiable simulation of the mixed-signal device, coupled with an unsupervised weight quantization method to optimize the network's parameters. Parameter noise injection during training provides robustness to the effects of quantization and device mismatch, making the method a promising candidate for real-world applications under hardware constraints and non-idealities. This work extends Rockpool, an open-source deep-learning library for SNNs, with support for accurate simulation of mixed-signal SNN dynamics. Our approach simplifies the development and deployment process for the neuromorphic community, making mixed-signal neuromorphic processors more accessible to researchers and developers.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.