Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Projections of Model Spaces for Latent Graph Inference (2303.11754v3)

Published 21 Mar 2023 in cs.LG

Abstract: Graph Neural Networks leverage the connectivity structure of graphs as an inductive bias. Latent graph inference focuses on learning an adequate graph structure to diffuse information on and improve the downstream performance of the model. In this work we employ stereographic projections of the hyperbolic and spherical model spaces, as well as products of Riemannian manifolds, for the purpose of latent graph inference. Stereographically projected model spaces achieve comparable performance to their non-projected counterparts, while providing theoretical guarantees that avoid divergence of the spaces when the curvature tends to zero. We perform experiments on both homophilic and heterophilic graphs.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.