Papers
Topics
Authors
Recent
2000 character limit reached

Online Learning of Wheel Odometry Correction for Mobile Robots with Attention-based Neural Network

Published 21 Mar 2023 in cs.RO and cs.AI | (2303.11725v1)

Abstract: Modern robotic platforms need a reliable localization system to operate daily beside humans. Simple pose estimation algorithms based on filtered wheel and inertial odometry often fail in the presence of abrupt kinematic changes and wheel slips. Moreover, despite the recent success of visual odometry, service and assistive robotic tasks often present challenging environmental conditions where visual-based solutions fail due to poor lighting or repetitive feature patterns. In this work, we propose an innovative online learning approach for wheel odometry correction, paving the way for a robust multi-source localization system. An efficient attention-based neural network architecture has been studied to combine precise performances with real-time inference. The proposed solution shows remarkable results compared to a standard neural network and filter-based odometry correction algorithms. Nonetheless, the online learning paradigm avoids the time-consuming data collection procedure and can be adopted on a generic robotic platform on-the-fly.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.