Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Uniform Risk Bounds for Learning with Dependent Data Sequences (2303.11650v1)

Published 21 Mar 2023 in cs.LG and stat.ML

Abstract: This paper extends standard results from learning theory with independent data to sequences of dependent data. Contrary to most of the literature, we do not rely on mixing arguments or sequential measures of complexity and derive uniform risk bounds with classical proof patterns and capacity measures. In particular, we show that the standard classification risk bounds based on the VC-dimension hold in the exact same form for dependent data, and further provide Rademacher complexity-based bounds, that remain unchanged compared to the standard results for the identically and independently distributed case. Finally, we show how to apply these results in the context of scenario-based optimization in order to compute the sample complexity of random programs with dependent constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.