Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Heterogeneous-Branch Collaborative Learning for Dialogue Generation (2303.11621v1)

Published 21 Mar 2023 in cs.CL and cs.AI

Abstract: With the development of deep learning, advanced dialogue generation methods usually require a greater amount of computational resources. One promising approach to obtaining a high-performance and lightweight model is knowledge distillation, which relies heavily on the pre-trained powerful teacher. Collaborative learning, also known as online knowledge distillation, is an effective way to conduct one-stage group distillation in the absence of a well-trained large teacher model. However, previous work has a severe branch homogeneity problem due to the same training objective and the independent identical training sets. To alleviate this problem, we consider the dialogue attributes in the training of network branches. Each branch learns the attribute-related features based on the selected subset. Furthermore, we propose a dual group-based knowledge distillation method, consisting of positive distillation and negative distillation, to further diversify the features of different branches in a steadily and interpretable way. The proposed approach significantly improves branch heterogeneity and outperforms state-of-the-art collaborative learning methods on two widely used open-domain dialogue datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.