Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse-IFT: Sparse Iso-FLOP Transformations for Maximizing Training Efficiency (2303.11525v4)

Published 21 Mar 2023 in cs.LG, cs.CL, and cs.CV

Abstract: Recent research has focused on weight sparsity in deep neural network training to reduce FLOPs, aiming for improved efficiency (test accuracy w.r.t training FLOPs). However, sparse weight training often compromises accuracy, requiring extended training schedules to attain the accuracy of dense models. In contrast, our approach, Sparse Iso-FLOP Transformations (Sparse-IFT), uses sparsity to improve accuracy while maintaining dense model FLOPs. Using a single hyperparameter (i.e., the sparsity level), Sparse-IFTs efficiently replace dense layers, expanding the search space for optimal sparse masks. In addition, dynamic sparse training (DST) with Sparse-IFT models effectively navigate this larger sparse mask-weight space, which is evidenced by a spectral analysis using Ramanujan graph properties. Our study reveals a robust correlation among mask topology, weights, and final performance. Notably, without adjusting any training hyperparameters, replacing dense layers with Sparse-IFT yields significant improvements, such as a +3.5% boost for ResNet-18 on ImageNet and +0.9% for GPT-3 Small on the Open LLM leaderboard. To the best of our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models through a set of simple-to-use sparse transformations. Code is available at: https://github.com/CerebrasResearch/Sparse-IFT.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.