Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On interval edge-colorings of planar graphs (2303.11466v1)

Published 20 Mar 2023 in cs.DM and math.CO

Abstract: An edge-coloring of a graph $G$ with colors $1,\ldots,t$ is called an \emph{interval $t$-coloring} if all colors are used and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. In 1990, Kamalian proved that if a graph $G$ with at least one edge has an interval $t$-coloring, then $t\leq 2|V(G)|-3$. In 2002, Axenovich improved this upper bound for planar graphs: if a planar graph $G$ admits an interval $t$-coloring, then $t\leq \frac{11}{6}|V(G)|$. In the same paper Axenovich suggested a conjecture that if a planar graph $G$ has an interval $t$-coloring, then $t\leq \frac{3}{2}|V(G)|$. In this paper we confirm the conjecture by showing that if a planar graph $G$ admits an interval $t$-coloring, then $t\leq \frac{3|V(G)|-4}{2}$. We also prove that if an outerplanar graph $G$ has an interval $t$-coloring, then $t\leq |V(G)|-1$. Moreover, all these upper bounds are sharp.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.