Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Recursive Euclidean Distance Based Robust Aggregation Technique For Federated Learning (2303.11337v1)

Published 20 Mar 2023 in cs.LG and cs.AI

Abstract: Federated learning has gained popularity as a solution to data availability and privacy challenges in machine learning. However, the aggregation process of local model updates to obtain a global model in federated learning is susceptible to malicious attacks, such as backdoor poisoning, label-flipping, and membership inference. Malicious users aim to sabotage the collaborative learning process by training the local model with malicious data. In this paper, we propose a novel robust aggregation approach based on recursive Euclidean distance calculation. Our approach measures the distance of the local models from the previous global model and assigns weights accordingly. Local models far away from the global model are assigned smaller weights to minimize the data poisoning effect during aggregation. Our experiments demonstrate that the proposed algorithm outperforms state-of-the-art algorithms by at least $5\%$ in accuracy while reducing time complexity by less than $55\%$. Our contribution is significant as it addresses the critical issue of malicious attacks in federated learning while improving the accuracy of the global model.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.