Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cascading Hierarchical Networks with Multi-task Balanced Loss for Fine-grained hashing (2303.11274v1)

Published 20 Mar 2023 in cs.CV

Abstract: With the explosive growth in the number of fine-grained images in the Internet era, it has become a challenging problem to perform fast and efficient retrieval from large-scale fine-grained images. Among the many retrieval methods, hashing methods are widely used due to their high efficiency and small storage space occupation. Fine-grained hashing is more challenging than traditional hashing problems due to the difficulties such as low inter-class variances and high intra-class variances caused by the characteristics of fine-grained images. To improve the retrieval accuracy of fine-grained hashing, we propose a cascaded network to learn compact and highly semantic hash codes, and introduce an attention-guided data augmentation method. We refer to this network as a cascaded hierarchical data augmentation network. We also propose a novel approach to coordinately balance the loss of multi-task learning. We do extensive experiments on some common fine-grained visual classification datasets. The experimental results demonstrate that our proposed method outperforms several state-of-art hashing methods and can effectively improve the accuracy of fine-grained retrieval. The source code is publicly available: https://github.com/kaiba007/FG-CNET.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub