Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Unified Framework of Policy Learning for Contextual Bandit with Confounding Bias and Missing Observations (2303.11187v1)

Published 20 Mar 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We study the offline contextual bandit problem, where we aim to acquire an optimal policy using observational data. However, this data usually contains two deficiencies: (i) some variables that confound actions are not observed, and (ii) missing observations exist in the collected data. Unobserved confounders lead to a confounding bias and missing observations cause bias and inefficiency problems. To overcome these challenges and learn the optimal policy from the observed dataset, we present a new algorithm called Causal-Adjusted Pessimistic (CAP) policy learning, which forms the reward function as the solution of an integral equation system, builds a confidence set, and greedily takes action with pessimism. With mild assumptions on the data, we develop an upper bound to the suboptimality of CAP for the offline contextual bandit problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.