Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Feature Alignment and Uniformity for Test Time Adaptation (2303.10902v3)

Published 20 Mar 2023 in cs.CV

Abstract: Test time adaptation (TTA) aims to adapt deep neural networks when receiving out of distribution test domain samples. In this setting, the model can only access online unlabeled test samples and pre-trained models on the training domains. We first address TTA as a feature revision problem due to the domain gap between source domains and target domains. After that, we follow the two measurements alignment and uniformity to discuss the test time feature revision. For test time feature uniformity, we propose a test time self-distillation strategy to guarantee the consistency of uniformity between representations of the current batch and all the previous batches. For test time feature alignment, we propose a memorized spatial local clustering strategy to align the representations among the neighborhood samples for the upcoming batch. To deal with the common noisy label problem, we propound the entropy and consistency filters to select and drop the possible noisy labels. To prove the scalability and efficacy of our method, we conduct experiments on four domain generalization benchmarks and four medical image segmentation tasks with various backbones. Experiment results show that our method not only improves baseline stably but also outperforms existing state-of-the-art test time adaptation methods. Code is available at \href{https://github.com/SakurajimaMaiii/TSD}{https://github.com/SakurajimaMaiii/TSD}.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com