Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computer Vision Estimation of Emotion Reaction Intensity in the Wild (2303.10741v2)

Published 19 Mar 2023 in cs.CV and cs.LG

Abstract: Emotions play an essential role in human communication. Developing computer vision models for automatic recognition of emotion expression can aid in a variety of domains, including robotics, digital behavioral healthcare, and media analytics. There are three types of emotional representations which are traditionally modeled in affective computing research: Action Units, Valence Arousal (VA), and Categorical Emotions. As part of an effort to move beyond these representations towards more fine-grained labels, we describe our submission to the newly introduced Emotional Reaction Intensity (ERI) Estimation challenge in the 5th competition for Affective Behavior Analysis in-the-Wild (ABAW). We developed four deep neural networks trained in the visual domain and a multimodal model trained with both visual and audio features to predict emotion reaction intensity. Our best performing model on the Hume-Reaction dataset achieved an average Pearson correlation coefficient of 0.4080 on the test set using a pre-trained ResNet50 model. This work provides a first step towards the development of production-grade models which predict emotion reaction intensities rather than discrete emotion categories.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.