Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Characterizing Nexus of Similarity within Knowledge Bases: A Logic-based Framework and its Computational Complexity Aspects (2303.10714v1)

Published 19 Mar 2023 in cs.AI

Abstract: Similarities between entities occur frequently in many real-world scenarios. For over a century, researchers in different fields have proposed a range of approaches to measure the similarity between entities. More recently, inspired by "Google Sets", significant academic and commercial efforts have been devoted to expanding a given set of entities with similar ones. As a result, existing approaches nowadays are able to take into account properties shared by entities, hereinafter called nexus of similarity. Accordingly, machines are largely able to deal with both similarity measures and set expansions. To the best of our knowledge, however, there is no way to characterize nexus of similarity between entities, namely identifying such nexus in a formal and comprehensive way so that they are both machine- and human-readable; moreover, there is a lack of consensus on evaluating existing approaches for weakly similar entities. As a first step towards filling these gaps, we aim to complement existing literature by developing a novel logic-based framework to formally and automatically characterize nexus of similarity between tuples of entities within a knowledge base. Furthermore, we analyze computational complexity aspects of this framework.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.