Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Intersecting diametral balls induced by a geometric graph II (2303.10706v2)

Published 19 Mar 2023 in math.CO, cs.CG, and math.MG

Abstract: For a graph whose vertices are points in $\mathbb Rd$, consider the closed balls with diameters induced by its edges. The graph is called a Tverberg graph if these closed balls intersect. A max-sum tree of a finite point set $X \subset \mathbb Rd$ is a tree with vertex set $X$ that maximizes the sum of Euclidean distances of its edges among all trees with vertex set $X$. Similarly, a max-sum matching of an even set $X \subset \mathbb Rd$ is a perfect matching of $X$ maximizing the sum of Euclidean distances between the matched points among all perfect matchings of $X$. We prove that a max-sum tree of any finite point set in $\mathbb Rd$ is a Tverberg graph, which generalizes a recent result of Abu-Affash et al., who established this claim in the plane. Additionally, we provide a new proof of a theorem by Bereg et al., which states that a max-sum matching of any even point set in the plane is a Tverberg graph. Moreover, we proved a slightly stronger version of this theorem.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.