Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Error analysis for a Crouzeix-Raviart approximation of the variable exponent Dirichlet problem (2303.10687v4)

Published 19 Mar 2023 in math.NA and cs.NA

Abstract: In the present paper, we examine a Crouzeix-Raviart approximation of the $p(\cdot)$-Dirichlet problem. We derive a $\textit{medius}$ error estimate, $\textit{i.e.}$, a best-approximation result, which holds for uniformly continuous exponents and implies $\textit{a priori}$ error estimates, which apply for H\"older continuous exponents and are optimal for Lipschitz continuous exponents. Numerical experiments are carried out to review the theoretical findings.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.