Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Immersion and Presence in the Metaverse with Over-the-Air Brain-Computer Interface (2303.10577v3)

Published 19 Mar 2023 in cs.HC

Abstract: This article proposes a novel framework that utilizes an over-the-air Brain-Computer Interface (BCI) to learn Metaverse users' expectations. By interpreting users' brain activities, our framework can optimize physical resources and enhance Quality-of-Experience (QoE) for users. To achieve this, we leverage a Wireless Edge Server (WES) to process electroencephalography (EEG) signals via uplink wireless channels, thus eliminating the computational burden for Metaverse users' devices. As a result, the WES can learn human behaviors, adapt system configurations, and allocate radio resources to tailor personalized user settings. Despite the potential of BCI, the inherent noisy wireless channels and uncertainty of the EEG signals make the related resource allocation and learning problems especially challenging. We formulate the joint learning and resource allocation problem as a mixed integer programming problem. Our solution involves two algorithms: a hybrid learning algorithm and a meta-learning algorithm. The hybrid learning algorithm can effectively find the solution for the formulated problem. Specifically, the meta-learning algorithm can further exploit the neurodiversity of the EEG signals across multiple users, leading to higher classification accuracy. Extensive simulation results with real-world BCI datasets show the effectiveness of our framework with low latency and high EEG signal classification accuracy.

Summary

We haven't generated a summary for this paper yet.