Papers
Topics
Authors
Recent
2000 character limit reached

An Efficient Subgraph GNN with Provable Substructure Counting Power (2303.10576v2)

Published 19 Mar 2023 in cs.LG

Abstract: We investigate the enhancement of graph neural networks' (GNNs) representation power through their ability in substructure counting. Recent advances have seen the adoption of subgraph GNNs, which partition an input graph into numerous subgraphs, subsequently applying GNNs to each to augment the graph's overall representation. Despite their ability to identify various substructures, subgraph GNNs are hindered by significant computational and memory costs. In this paper, we tackle a critical question: Is it possible for GNNs to count substructures both \textbf{efficiently} and \textbf{provably}? Our approach begins with a theoretical demonstration that the distance to rooted nodes in subgraphs is key to boosting the counting power of subgraph GNNs. To avoid the need for repetitively applying GNN across all subgraphs, we introduce precomputed structural embeddings that encapsulate this crucial distance information. Experiments validate that our proposed model retains the counting power of subgraph GNNs while achieving significantly faster performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.