Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reinforcement Learning Friendly Vision-Language Model for Minecraft (2303.10571v2)

Published 19 Mar 2023 in cs.LG and cs.CV

Abstract: One of the essential missions in the AI research community is to build an autonomous embodied agent that can achieve high-level performance across a wide spectrum of tasks. However, acquiring or manually designing rewards for all open-ended tasks is unrealistic. In this paper, we propose a novel cross-modal contrastive learning framework architecture, CLIP4MC, aiming to learn a reinforcement learning (RL) friendly vision-LLM (VLM) that serves as an intrinsic reward function for open-ended tasks. Simply utilizing the similarity between the video snippet and the language prompt is not RL-friendly since standard VLMs may only capture the similarity at a coarse level. To achieve RL-friendliness, we incorporate the task completion degree into the VLM training objective, as this information can assist agents in distinguishing the importance between different states. Moreover, we provide neat YouTube datasets based on the large-scale YouTube database provided by MineDojo. Specifically, two rounds of filtering operations guarantee that the dataset covers enough essential information and that the video-text pair is highly correlated. Empirically, we demonstrate that the proposed method achieves better performance on RL tasks compared with baselines. The code and datasets are available at https://github.com/PKU-RL/CLIP4MC.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.