Papers
Topics
Authors
Recent
2000 character limit reached

A Deep Learning System for Domain-specific Speech Recognition (2303.10510v2)

Published 18 Mar 2023 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: As human-machine voice interfaces provide easy access to increasingly intelligent machines, many state-of-the-art automatic speech recognition (ASR) systems are proposed. However, commercial ASR systems usually have poor performance on domain-specific speech especially under low-resource settings. The author works with pre-trained DeepSpeech2 and Wav2Vec2 acoustic models to develop benefit-specific ASR systems. The domain-specific data are collected using proposed semi-supervised learning annotation with little human intervention. The best performance comes from a fine-tuned Wav2Vec2-Large-LV60 acoustic model with an external KenLM, which surpasses the Google and AWS ASR systems on benefit-specific speech. The viability of using error prone ASR transcriptions as part of spoken language understanding (SLU) is also investigated. Results of a benefit-specific natural language understanding (NLU) task show that the domain-specific fine-tuned ASR system can outperform the commercial ASR systems even when its transcriptions have higher word error rate (WER), and the results between fine-tuned ASR and human transcriptions are similar.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.