Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MotionTrack: Learning Robust Short-term and Long-term Motions for Multi-Object Tracking (2303.10404v2)

Published 18 Mar 2023 in cs.CV

Abstract: The main challenge of Multi-Object Tracking~(MOT) lies in maintaining a continuous trajectory for each target. Existing methods often learn reliable motion patterns to match the same target between adjacent frames and discriminative appearance features to re-identify the lost targets after a long period. However, the reliability of motion prediction and the discriminability of appearances can be easily hurt by dense crowds and extreme occlusions in the tracking process. In this paper, we propose a simple yet effective multi-object tracker, i.e., MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range. For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target. For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection. Our Interaction Module and Refind Module are embedded in the well-known tracking-by-detection paradigm, which can work in tandem to maintain superior performance. Extensive experimental results on MOT17 and MOT20 datasets demonstrate the superiority of our approach in challenging scenarios, and it achieves state-of-the-art performances at various MOT metrics.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.