Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Linear Quadratic Tracking with Regret Guarantees (2303.10260v3)

Published 17 Mar 2023 in eess.SY and cs.SY

Abstract: Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a priori and is revealed after the applied control input. We show the equivalence of this problem to the control of linear systems subject to adversarial disturbances and propose a novel online gradient descent based algorithm to achieve efficient tracking in finite time. We provide a dynamic regret upper bound scaling linearly with the path length of the reference trajectory and a numerical example to corroborate the theoretical guarantees.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.