Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Retrieving false claims on Twitter during the Russia-Ukraine conflict (2303.10121v1)

Published 17 Mar 2023 in cs.SI

Abstract: Nowadays, false and unverified information on social media sway individuals' perceptions during major geo-political events and threaten the quality of the whole digital information ecosystem. Since the Russian invasion of Ukraine, several fact-checking organizations have been actively involved in verifying stories related to the conflict that circulated online. In this paper, we leverage a public repository of fact-checked claims to build a methodological framework for automatically identifying false and unsubstantiated claims spreading on Twitter in February 2022. Our framework consists of two sequential models: First, the claim detection model identifies whether tweets incorporate a (false) claim among those considered in our collection. Then, the claim retrieval model matches the tweets with fact-checked information by ranking verified claims according to their relevance with the input tweet. Both models are based on pre-trained LLMs and fine-tuned to perform a text classification task and an information retrieval task, respectively. In particular, to validate the effectiveness of our methodology, we consider 83 verified false claims that spread on Twitter during the first week of the invasion, and manually annotate 5,872 tweets according to the claim(s) they report. Our experiments show that our proposed methodology outperforms standard baselines for both claim detection and claim retrieval. Overall, our results highlight how social media providers could effectively leverage semi-automated approaches to identify, track, and eventually moderate false information that spreads on their platforms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.