Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploiting Semantic Attributes for Transductive Zero-Shot Learning (2303.09849v1)

Published 17 Mar 2023 in cs.CV and cs.AI

Abstract: Zero-shot learning (ZSL) aims to recognize unseen classes by generalizing the relation between visual features and semantic attributes learned from the seen classes. A recent paradigm called transductive zero-shot learning further leverages unlabeled unseen data during training and has obtained impressive results. These methods always synthesize unseen features from attributes through a generative adversarial network to mitigate the bias towards seen classes. However, they neglect the semantic information in the unlabeled unseen data and thus fail to generate high-fidelity attribute-consistent unseen features. To address this issue, we present a novel transductive ZSL method that produces semantic attributes of the unseen data and imposes them on the generative process. In particular, we first train an attribute decoder that learns the mapping from visual features to semantic attributes. Then, from the attribute decoder, we obtain pseudo-attributes of unlabeled data and integrate them into the generative model, which helps capture the detailed differences within unseen classes so as to synthesize more discriminative features. Experiments on five standard benchmarks show that our method yields state-of-the-art results for zero-shot learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube