Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DORIC : Domain Robust Fine-Tuning for Open Intent Clustering through Dependency Parsing (2303.09827v1)

Published 17 Mar 2023 in cs.CL and cs.AI

Abstract: We present our work on Track 2 in the Dialog System Technology Challenges 11 (DSTC11). DSTC11-Track2 aims to provide a benchmark for zero-shot, cross-domain, intent-set induction. In the absence of in-domain training dataset, robust utterance representation that can be used across domains is necessary to induce users' intentions. To achieve this, we leveraged a multi-domain dialogue dataset to fine-tune the LLM and proposed extracting Verb-Object pairs to remove the artifacts of unnecessary information. Furthermore, we devised the method that generates each cluster's name for the explainability of clustered results. Our approach achieved 3rd place in the precision score and showed superior accuracy and normalized mutual information (NMI) score than the baseline model on various domain datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.