Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

DexRepNet: Learning Dexterous Robotic Grasping Network with Geometric and Spatial Hand-Object Representations (2303.09806v4)

Published 17 Mar 2023 in cs.RO

Abstract: Robotic dexterous grasping is a challenging problem due to the high degree of freedom (DoF) and complex contacts of multi-fingered robotic hands. Existing deep reinforcement learning (DRL) based methods leverage human demonstrations to reduce sample complexity due to the high dimensional action space with dexterous grasping. However, less attention has been paid to hand-object interaction representations for high-level generalization. In this paper, we propose a novel geometric and spatial hand-object interaction representation, named DexRep, to capture dynamic object shape features and the spatial relations between hands and objects during grasping. DexRep comprises Occupancy Feature for rough shapes within sensing range by moving hands, Surface Feature for changing hand-object surface distances, and Local-Geo Feature for local geometric surface features most related to potential contacts. Based on the new representation, we propose a dexterous deep reinforcement learning method to learn a generalizable grasping policy DexRepNet. Experimental results show that our method outperforms baselines using existing representations for robotic grasping dramatically both in grasp success rate and convergence speed. It achieves a 93% grasping success rate on seen objects and higher than 80% grasping success rates on diverse objects of unseen categories in both simulation and real-world experiments.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.