Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Instance-Conditioned GAN Data Augmentation for Representation Learning (2303.09677v1)

Published 16 Mar 2023 in cs.CV

Abstract: Data augmentation has become a crucial component to train state-of-the-art visual representation models. However, handcrafting combinations of transformations that lead to improved performances is a laborious task, which can result in visually unrealistic samples. To overcome these limitations, recent works have explored the use of generative models as learnable data augmentation tools, showing promising results in narrow application domains, e.g., few-shot learning and low-data medical imaging. In this paper, we introduce a data augmentation module, called DA_IC-GAN, which leverages instance-conditioned GAN generations and can be used off-the-shelf in conjunction with most state-of-the-art training recipes. We showcase the benefits of DA_IC-GAN by plugging it out-of-the-box into the supervised training of ResNets and DeiT models on the ImageNet dataset, and achieving accuracy boosts up to between 1%p and 2%p with the highest capacity models. Moreover, the learnt representations are shown to be more robust than the baselines when transferred to a handful of out-of-distribution datasets, and exhibit increased invariance to variations of instance and viewpoints. We additionally couple DA_IC-GAN with a self-supervised training recipe and show that we can also achieve an improvement of 1%p in accuracy in some settings. With this work, we strengthen the evidence on the potential of learnable data augmentations to improve visual representation learning, paving the road towards non-handcrafted augmentations in model training.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.