Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Full-Body Cardiovascular Sensing with Remote Photoplethysmography (2303.09638v1)

Published 16 Mar 2023 in cs.CV

Abstract: Remote photoplethysmography (rPPG) allows for noncontact monitoring of blood volume changes from a camera by detecting minor fluctuations in reflected light. Prior applications of rPPG focused on face videos. In this paper we explored the feasibility of rPPG from non-face body regions such as the arms, legs, and hands. We collected a new dataset titled Multi-Site Physiological Monitoring (MSPM), which will be released with this paper. The dataset consists of 90 frames per second video of exposed arms, legs, and face, along with 10 synchronized PPG recordings. We performed baseline heart rate estimation experiments from non-face regions with several state-of-the-art rPPG approaches, including chrominance-based (CHROM), plane-orthogonal-to-skin (POS) and RemotePulseNet (RPNet). To our knowledge, this is the first evaluation of the fidelity of rPPG signals simultaneously obtained from multiple regions of a human body. Our experiments showed that skin pixels from arms, legs, and hands are all potential sources of the blood volume pulse. The best-performing approach, POS, achieved a mean absolute error peaking at 7.11 beats per minute from non-facial body parts compared to 1.38 beats per minute from the face. Additionally, we performed experiments on pulse transit time (PTT) from both the contact PPG and rPPG signals. We found that remote PTT is possible with moderately high frame rate video when distal locations on the body are visible. These findings and the supporting dataset should facilitate new research on non-face rPPG and monitoring blood flow dynamics over the whole body with a camera.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube