Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Variational Principles for Mirror Descent and Mirror Langevin Dynamics (2303.09532v1)

Published 16 Mar 2023 in math.OC and cs.LG

Abstract: Mirror descent, introduced by Nemirovski and Yudin in the 1970s, is a primal-dual convex optimization method that can be tailored to the geometry of the optimization problem at hand through the choice of a strongly convex potential function. It arises as a basic primitive in a variety of applications, including large-scale optimization, machine learning, and control. This paper proposes a variational formulation of mirror descent and of its stochastic variant, mirror Langevin dynamics. The main idea, inspired by the classic work of Brezis and Ekeland on variational principles for gradient flows, is to show that mirror descent emerges as a closed-loop solution for a certain optimal control problem, and the Bellman value function is given by the Bregman divergence between the initial condition and the global minimizer of the objective function.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.