Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Block-wise Bit-Compression of Transformer-based Models (2303.09184v2)

Published 16 Mar 2023 in cs.CL and cs.LG

Abstract: With the popularity of the recent Transformer-based models represented by BERT, GPT-3 and ChatGPT, there has been state-of-the-art performance in a range of natural language processing tasks. However, the massive computations, huge memory footprint, and thus high latency of Transformer-based models is an inevitable challenge for the cloud with high real-time requirement. To tackle the issue, we propose BBCT, a method of block-wise bit-compression for transformer without retraining. Our method achieves more fine-grained compression of the whole transformer, including embedding, matrix multiplication, GELU, softmax, layer normalization, and all the intermediate results. As a case, we compress an efficient BERT with the method of BBCT. Our benchmark test results on General Language Understanding Evaluation (GLUE) show that BBCT can achieve less than 1% accuracy drop in most tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.