Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stochastic gradient descent for linear inverse problems in variable exponent Lebesgue spaces (2303.09182v1)

Published 16 Mar 2023 in math.OC, cs.NA, and math.NA

Abstract: We consider a stochastic gradient descent (SGD) algorithm for solving linear inverse problems (e.g., CT image reconstruction) in the Banach space framework of variable exponent Lebesgue spaces $\ell{(p_n)}(\mathbb{R})$. Such non-standard spaces have been recently proved to be the appropriate functional framework to enforce pixel-adaptive regularisation in signal and image processing applications. Compared to its use in Hilbert settings, however, the application of SGD in the Banach setting of $\ell{(p_n)}(\mathbb{R})$ is not straightforward, due, in particular to the lack of a closed-form expression and the non-separability property of the underlying norm. In this manuscript, we show that SGD iterations can effectively be performed using the associated modular function. Numerical validation on both simulated and real CT data show significant improvements in comparison to SGD solutions both in Hilbert and other Banach settings, in particular when non-Gaussian or mixed noise is observed in the data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube