Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Empowering CAM-Based Methods with Capability to Generate Fine-Grained and High-Faithfulness Explanations (2303.09171v3)

Published 16 Mar 2023 in cs.CV

Abstract: Recently, the explanation of neural network models has garnered considerable research attention. In computer vision, CAM (Class Activation Map)-based methods and LRP (Layer-wise Relevance Propagation) method are two common explanation methods. However, since most CAM-based methods can only generate global weights, they can only generate coarse-grained explanations at a deep layer. LRP and its variants, on the other hand, can generate fine-grained explanations. But the faithfulness of the explanations is too low. To address these challenges, in this paper, we propose FG-CAM (Fine-Grained CAM), which extends CAM-based methods to enable generating fine-grained and high-faithfulness explanations. FG-CAM uses the relationship between two adjacent layers of feature maps with resolution differences to gradually increase the explanation resolution, while finding the contributing pixels and filtering out the pixels that do not contribute. Our method not only solves the shortcoming of CAM-based methods without changing their characteristics, but also generates fine-grained explanations that have higher faithfulness than LRP and its variants. We also present FG-CAM with denoising, which is a variant of FG-CAM and is able to generate less noisy explanations with almost no change in explanation faithfulness. Experimental results show that the performance of FG-CAM is almost unaffected by the explanation resolution. FG-CAM outperforms existing CAM-based methods significantly in both shallow and intermediate layers, and outperforms LRP and its variants significantly in the input layer. Our code is available at https://github.com/dongmo-qcq/FG-CAM.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub