Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Joint Multi-Scale Tone Mapping and Denoising for HDR Image Enhancement (2303.09071v2)

Published 16 Mar 2023 in eess.IV and cs.CV

Abstract: An image processing unit (IPU), or image signal processor (ISP) for high dynamic range (HDR) imaging usually consists of demosaicing, white balancing, lens shading correction, color correction, denoising, and tone-mapping. Besides noise from the imaging sensors, almost every step in the ISP introduces or amplifies noise in different ways, and denoising operators are designed to reduce the noise from these sources. Designed for dynamic range compressing, tone-mapping operators in an ISP can significantly amplify the noise level, especially for images captured in low-light conditions, making denoising very difficult. Therefore, we propose a joint multi-scale denoising and tone-mapping framework that is designed with both operations in mind for HDR images. Our joint network is trained in an end-to-end format that optimizes both operators together, to prevent the tone-mapping operator from overwhelming the denoising operator. Our model outperforms existing HDR denoising and tone-mapping operators both quantitatively and qualitatively on most of our benchmarking datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.