Papers
Topics
Authors
Recent
2000 character limit reached

Extracting the Brain-like Representation by an Improved Self-Organizing Map for Image Classification (2303.09035v1)

Published 16 Mar 2023 in cs.CV

Abstract: Backpropagation-based supervised learning has achieved great success in computer vision tasks. However, its biological plausibility is always controversial. Recently, the bio-inspired Hebbian learning rule (HLR) has received extensive attention. Self-Organizing Map (SOM) uses the competitive HLR to establish connections between neurons, obtaining visual features in an unsupervised way. Although the representation of SOM neurons shows some brain-like characteristics, it is still quite different from the neuron representation in the human visual cortex. This paper proposes an improved SOM with multi-winner, multi-code, and local receptive field, named mlSOM. We observe that the neuron representation of mlSOM is similar to the human visual cortex. Furthermore, mlSOM shows a sparse distributed representation of objects, which has also been found in the human inferior temporal area. In addition, experiments show that mlSOM achieves better classification accuracy than the original SOM and other state-of-the-art HLR-based methods. The code is accessible at https://github.com/JiaHongZ/mlSOM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.