Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Imitation and Transfer Learning for LQG Control (2303.09002v2)

Published 16 Mar 2023 in eess.SY, cs.SY, and math.OC

Abstract: In this paper we study an imitation and transfer learning setting for Linear Quadratic Gaussian (LQG) control, where (i) the system dynamics, noise statistics and cost function are unknown and expert data is provided (that is, sequences of optimal inputs and outputs) to learn the LQG controller, and (ii) multiple control tasks are performed for the same system but with different LQG costs. We show that the LQG controller can be learned from a set of expert trajectories of length $n(l+2)-1$, with $n$ and $l$ the dimension of the system state and output, respectively. Further, the controller can be decomposed as the product of an estimation matrix, which depends only on the system dynamics, and a control matrix, which depends on the LQG cost. This data-based separation principle allows us to transfer the estimation matrix across different LQG tasks, and to reduce the length of the expert trajectories needed to learn the LQG controller to~$2n+m-1$ with $m$ the dimension of the inputs (for single-input systems with $l=2$, this yields approximately a $50\%$ reduction of the required expert data).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.