Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Deep Learning Based Feedback Linearization of Systems with Unknown Dynamics (2303.08926v2)

Published 15 Mar 2023 in eess.SY and cs.SY

Abstract: A methodology is developed to learn a feedback linearization (i.e., nonlinear change of coordinates and input transformation) using a data-driven approach for a single input control-affine nonlinear system with unknown dynamics. We employ deep neural networks to learn the feedback law (input transformation) in conjunction with an extension of invertible neural networks to learn the nonlinear change of coordinates (state transformation). We also learn the matrices A and B of the transformed linear system and define loss terms to ensure controllability of the pair (A, B). The efficacy of our approach is demonstrated by simulations on several nonlinear systems. Furthermore, we show that state feedback controllers designed using the feedback linearized system yield expected closed-loop behavior when applied to the original nonlinear system, further demonstrating validity of the learned feedback linearization.

Citations (4)

Summary

We haven't generated a summary for this paper yet.