Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features (2303.08727v2)

Published 15 Mar 2023 in cs.CV

Abstract: Detecting out-of-distribution (OOD) inputs is a principal task for ensuring the safety of deploying deep-neural-network classifiers in open-set scenarios. OOD samples can be drawn from arbitrary distributions and exhibit deviations from in-distribution (ID) data in various dimensions, such as foreground features (e.g., objects in CIFAR100 images vs. those in CIFAR10 images) and background features (e.g., textural images vs. objects in CIFAR10). Existing methods can confound foreground and background features in training, failing to utilize the background features for OOD detection. This paper considers the importance of feature disentanglement in out-of-distribution detection and proposes the simultaneous exploitation of both foreground and background features to support the detection of OOD inputs in in out-of-distribution detection. To this end, we propose a novel framework that first disentangles foreground and background features from ID training samples via a dense prediction approach, and then learns a new classifier that can evaluate the OOD scores of test images from both foreground and background features. It is a generic framework that allows for a seamless combination with various existing OOD detection methods. Extensive experiments show that our approach 1) can substantially enhance the performance of four different state-of-the-art (SotA) OOD detection methods on multiple widely-used OOD datasets with diverse background features, and 2) achieves new SotA performance on these benchmarks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.