Papers
Topics
Authors
Recent
2000 character limit reached

Speech Signal Improvement Using Causal Generative Diffusion Models (2303.08674v1)

Published 15 Mar 2023 in eess.AS and cs.SD

Abstract: In this paper, we present a causal speech signal improvement system that is designed to handle different types of distortions. The method is based on a generative diffusion model which has been shown to work well in scenarios with missing data and non-linear corruptions. To guarantee causal processing, we modify the network architecture of our previous work and replace global normalization with causal adaptive gain control. We generate diverse training data containing a broad range of distortions. This work was performed in the context of an "ICASSP Signal Processing Grand Challenge" and submitted to the non-real-time track of the "Speech Signal Improvement Challenge 2023", where it was ranked fifth.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.