Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation from Single to Multi Labels: an Empirical Study (2303.08360v1)

Published 15 Mar 2023 in cs.CV

Abstract: Knowledge distillation (KD) has been extensively studied in single-label image classification. However, its efficacy for multi-label classification remains relatively unexplored. In this study, we firstly investigate the effectiveness of classical KD techniques, including logit-based and feature-based methods, for multi-label classification. Our findings indicate that the logit-based method is not well-suited for multi-label classification, as the teacher fails to provide inter-category similarity information or regularization effect on student model's training. Moreover, we observe that feature-based methods struggle to convey compact information of multiple labels simultaneously. Given these limitations, we propose that a suitable dark knowledge should incorporate class-wise information and be highly correlated with the final classification results. To address these issues, we introduce a novel distillation method based on Class Activation Maps (CAMs), which is both effective and straightforward to implement. Across a wide range of settings, CAMs-based distillation consistently outperforms other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.