Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Knowledge Distillation from Single to Multi Labels: an Empirical Study (2303.08360v1)

Published 15 Mar 2023 in cs.CV

Abstract: Knowledge distillation (KD) has been extensively studied in single-label image classification. However, its efficacy for multi-label classification remains relatively unexplored. In this study, we firstly investigate the effectiveness of classical KD techniques, including logit-based and feature-based methods, for multi-label classification. Our findings indicate that the logit-based method is not well-suited for multi-label classification, as the teacher fails to provide inter-category similarity information or regularization effect on student model's training. Moreover, we observe that feature-based methods struggle to convey compact information of multiple labels simultaneously. Given these limitations, we propose that a suitable dark knowledge should incorporate class-wise information and be highly correlated with the final classification results. To address these issues, we introduce a novel distillation method based on Class Activation Maps (CAMs), which is both effective and straightforward to implement. Across a wide range of settings, CAMs-based distillation consistently outperforms other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.