Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RODD: Robust Outlier Detection in Data Cubes (2303.08193v1)

Published 14 Mar 2023 in cs.DB and cs.LG

Abstract: Data cubes are multidimensional databases, often built from several separate databases, that serve as flexible basis for data analysis. Surprisingly, outlier detection on data cubes has not yet been treated extensively. In this work, we provide the first framework to evaluate robust outlier detection methods in data cubes (RODD). We introduce a novel random forest-based outlier detection approach (RODD-RF) and compare it with more traditional methods based on robust location estimators. We propose a general type of test data and examine all methods in a simulation study. Moreover, we apply ROOD-RF to real world data. The results show that RODD-RF can lead to improved outlier detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.