Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Normal Form Bisimulations By Value (2303.08161v2)

Published 14 Mar 2023 in cs.LO and cs.PL

Abstract: Normal form bisimilarities are a natural form of program equivalence resting on open terms, first introduced by Sangiorgi in call-by-name. The literature contains a normal form bisimilarity for Plotkin's call-by-value $\lambda$-calculus, Lassen's \emph{enf bisimilarity}, which validates all of Moggi's monadic laws and can be extended to validate $\eta$. It does not validate, however, other relevant principles, such as the identification of meaningless terms -- validated instead by Sangiorgi's bisimilarity -- or the commutation of $\letexp$s. These shortcomings are due to issues with open terms of Plotkin's calculus. We introduce a new call-by-value normal form bisimilarity, deemed \emph{net bisimilarity}, closer in spirit to Sangiorgi's and satisfying the additional principles. We develop it on top of an existing formalism designed for dealing with open terms in call-by-value. It turns out that enf and net bisimilarities are \emph{incomparable}, as net bisimilarity does not validate Moggi's laws nor $\eta$. Moreover, there is no easy way to merge them. To better understand the situation, we provide an analysis of the rich range of possible call-by-value normal form bisimilarities, relating them to Ehrhard's relational model.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.