Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Generation-Guided Multi-Level Unified Network for Video Grounding (2303.07748v1)

Published 14 Mar 2023 in cs.CV and cs.MM

Abstract: Video grounding aims to locate the timestamps best matching the query description within an untrimmed video. Prevalent methods can be divided into moment-level and clip-level frameworks. Moment-level approaches directly predict the probability of each transient moment to be the boundary in a global perspective, and they usually perform better in coarse grounding. On the other hand, clip-level ones aggregate the moments in different time windows into proposals and then deduce the most similar one, leading to its advantage in fine-grained grounding. In this paper, we propose a multi-level unified framework to enhance performance by leveraging the merits of both moment-level and clip-level methods. Moreover, a novel generation-guided paradigm in both levels is adopted. It introduces a multi-modal generator to produce the implicit boundary feature and clip feature, later regarded as queries to calculate the boundary scores by a discriminator. The generation-guided solution enhances video grounding from a two-unique-modals' match task to a cross-modal attention task, which steps out of the previous framework and obtains notable gains. The proposed Generation-guided Multi-level Unified network (GMU) surpasses previous methods and reaches State-Of-The-Art on various benchmarks with disparate features, e.g., Charades-STA, ActivityNet captions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube